# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 5,11-Bis(4-*tert*-butylphenyl)-6,12diphenylnaphthacene (form A)

# Götz Schuck,<sup>a</sup>\* Simon Haas,<sup>b</sup> Arno F. Stassen,<sup>b</sup> Ulrich Berens<sup>c</sup> and Bertram Batlogg<sup>b</sup>

<sup>a</sup>Laboratory for Neutron Scattering, ETH Zürich and Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland, <sup>b</sup>Laboratory for Solid State Physics, ETH Zürich, Schafmattstrasse 16, CH-8093 Zürich, Switzerland, and <sup>c</sup>Ciba Specialty Chemistry Inc., CH-4002 Basel, Switzerland

Correspondence e-mail: goetz.schuck@psi.ch

Received 30 April 2007; accepted 7 May 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.098; wR factor = 0.169; data-to-parameter ratio = 12.4.

The title compound,  $C_{50}H_{44}$ , is a derivative of rubrene where *tert*-butyl side groups are added to two of the pendant aromatic rings. Two polymorphs of this derivative, the title compound (form A) and form B, have been identified. The molecule of form A displays a strongly twisted naphthacene backbone. The in-plane arrangement differs from the classical herringbone structure, resembling a slip–stack structure type with the backbones separated by a minimum 7.0 Å in the direction of possible  $\pi$ -stacking.

#### **Related literature**

For related literature, see: Goldmann *et al.* (2004); Haas *et al.* (2007); Kloc *et al.* (1997); Kopranenkov & Luk'yanets (1972); Laudise *et al.* (1998); Mattheus *et al.* (2001); Schuck *et al.* (2007); Strassen *et al.* (2007); Sundar *et al.* (2004).



#### **Experimental**

Crystal data

| $C_{50}H_{44}$       | b = 9.0277 (10)      |
|----------------------|----------------------|
| $M_r = 644.85$       | c = 17.764 (2)       |
| Monoclinic, $P2_1/c$ | $\beta = 95.928$ (4) |
| a = 23.527 (3) Å     | V = 3752.8 (8        |

| Z = 4                        |
|------------------------------|
| Mo $K\alpha$ radiation       |
| $\mu = 0.06 \text{ mm}^{-1}$ |

#### Data collection

```
Brucker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996;
Blessing, 1995)
T_{min} = 0.990, T_{max} = 0.997
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.098$  $wR(F^2) = 0.169$ S = 1.116626 reflections 536 parameters T = 292 (1) K $0.36 \times 0.16 \times 0.04 \text{ mm}$ 

31129 measured reflections 6626 independent reflections 3478 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.100$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$ 

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The SMART CCD measurements were performed in the group of Professor R. Nesper at the Laboratory of Inorganic Chemistry, ETH Zürich. We acknowledge useful discussions with Michael Wörle (Laboratory of Inorganic Chemistry, ETH Zürich), and thank Oliver Dosenbach for assistance in the synthesis of the title compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2402).

#### References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (2000). SAINT (Version 6.02a) and SMART (Version 5.55). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Goldmann, C., Haas, S., Krellner, C., Pernstich, K. P., Gundlach, D. J. & Batlogg, B. (2004). J. Appl. Phys. 96, 2080–2086.
- Haas, S., Stassen, A. F., Schuck, G., Pernstich, K. P., Gundlach, D. J., Batlogg, B., Berens, U. & Kirner, H. J. (2007). *Phys. Rev. B.* Accepted.
- Kloc, C., Simpkins, P. G., Siegrist, T. & Laudise, R. A. (1997). J. Cryst. Growth, 182, 416–427.

Kopranenkov, V. N. & Luk'yanets, E. A. (1972). Zh. Org. Khim. 8, 1690–1692.

Laudise, R. A., Kloc, C., Simpkins, P. G. & Siegrist, T. (1998). J. Cryst. Growth, 187, 449–454.

- Mattheus, C. C., Dros, A. B., Baas, J., Meetsma, A., Boer, J. L. de & Palstra, T. T. M. (2001). Acta Cryst. C57, 939–941.
- Schuck, G., Haas, S., Stassen, A. F., Kirner, H. & Batlogg, B. (2007). *Acta Cryst.* E63, o2893.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stassen, A. F., Haas, S., Schuck, G. & Batlogg, B. (2007). Unpublished results.
- Sundar, V. C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R. L., Someya, T., Gershenson, M. E. & Rogers, J. A. (2004). *Science*, **303**, 1644–1646.

Acta Cryst. (2007). E63, o2894 [doi:10.1107/S1600536807022490]

## 5,11-Bis(4-tert-butylphenyl)-6,12-diphenylnaphthacene (form A)

### G. Schuck, S. Haas, A. F. Stassen, U. Berens and B. Batlogg

#### Comment

The electronic properties of rubrene and rubrene derivatives are of great interest owing to fundamental questions on charge transport and associated applications (Sundar *et al.*, 2004; Goldmann *et al.*, 2004). The electric transport properties of the two polymorphs of the title compound are distinctly different: in polymorph B, the in-plane hole is as high as  $12 \text{ cm}^2/\text{Vs}$ , on par with rubrene, which is known to be the organic semiconductor with the highest hole mobility. In contrast, the title compound, (I), polymorph A is highly resistive and does not show any field-induced electrical transport (Haas *et al.*, 2007, Strassen *et al.*, 2007).

The crystal structure of (I) is monoclinic, with space group  $P2_1/c$ , with four molecules in the unit cell (Fig. 1). The molecules form a layered structure, similar to linear acenes such as pentacene (Mattheus *et al.*, 2001) with the naphthacene backbone standing upright (see Fig. 2). A particular characteristic of polymorph A is the twist of the naphthalene backbone by 43° (defined as the torsion angle between the two terminal C—C bonds [C1—C2 and C17—C18] at the ends of the backbone).

Polymorph B exclusively grows in the form of ultrathin platelets (Haas *et al.*, 2007). From d-spacing measurements on these samples, a structure closely related to the one found for a constitutional isomer, 5,12-bis-(4-tert-butyl-phenyl)-6,11-diphenyl-naphthacene (Schuck *et al.*, 2007) was assumed for polymorph B. A complete structure determination of form B, however, has not been feasible so far due to the crystal morphology.

#### **Experimental**

The title compound was synthesized according to the method of Kopranenkov & Luk'yanets (1972). Physical vapour transport (Kloc *et al.*, 1997, Laudise *et al.*, 1998) at 533 K, using high purity argon as the transport gas made single crystals of both polymorphs at the same time. The morphology (plates typically 0.1-0.2  $\mu$ m thick), orange colour and transparency of both forms are basically the same. The two forms can only be distinguished by measuring their d-spacings perpendicular to the crystal platelets (form A: d<sub>100</sub> = 23.4 Å and form B d = 35.1 Å) (Haas *et al.*, 2007).

Only at a slightly higher temperature (and with longer growth time), a few thicker crystals of form A could be grown for full structural characterization with XRD.

#### Refinement

The H atoms in the aromatic units were located in difference maps and their positions were freely refined with  $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ . The H atoms of the methyl groups were positioned geometrically (C—H = 0.96 Å) and were refined as riding on the parent C atoms with  $U_{iso}(H) = 1.5U_{eq}(\text{carrier})$ .

**Figures** 



Fig. 1. The molecular structure of (I), showing the atom numbering scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Fig. 2. The crystal packing for (I), viewed (a) down the a axis and (b) viewed down the b axis.

## 5,11-Bis(4-tert-butyl-phenyl)-6,12-diphenylnaphthacene

| Crystal data                    |                                              |
|---------------------------------|----------------------------------------------|
| C <sub>50</sub> H <sub>44</sub> | $F_{000} = 1376$                             |
| $M_r = 644.85$                  | $D_{\rm x} = 1.141 { m Mg m}^{-3}$           |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc            | Cell parameters from 3136 reflections        |
| a = 23.527 (3)  Å               | $\theta = 3.0-25.0^{\circ}$                  |
| b = 9.0277 (10)  Å              | $\mu = 0.06 \text{ mm}^{-1}$                 |
| c = 17.764 (2) Å                | T = 292 (1)  K                               |
| $\beta = 95.928 \ (4)^{\circ}$  | Plate, translucent orange                    |
| $V = 3752.8 (8) \text{ Å}^3$    | $0.36 \times 0.16 \times 0.04 \text{ mm}$    |
| Z = 4                           |                                              |

### Data collection

| Brucker SMART CCD<br>diffractometer                                            | 6626 independent reflections           |
|--------------------------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                                       | 3478 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                                        | $R_{\rm int} = 0.100$                  |
| T = 292(1)  K                                                                  | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\phi$ and $\omega$ scans                                                      | $\theta_{\min} = 0.9^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996; Blessing, 1995) | $h = -27 \rightarrow 27$               |
| $T_{\min} = 0.990, T_{\max} = 0.997$                                           | $k = -10 \rightarrow 10$               |
| 31129 measured reflections                                                     | $l = -21 \rightarrow 21$               |
|                                                                                |                                        |

### Refinement

| Refinement on $F^2$        | H atoms treated by a mixture of independent and constrained refinement |
|----------------------------|------------------------------------------------------------------------|
| Least-squares matrix: full | $w = 1/[\sigma^2(F_0^2) + (0.0241P)^2 + 4.9951P]$                      |

 where  $P = (F_0^2 + 2F_c^2)/3$ 
 $R[F^2 > 2\sigma(F^2)] = 0.098$   $(\Delta/\sigma)_{max} = 0.004$ 
 $wR(F^2) = 0.169$   $\Delta\rho_{max} = 0.29 \text{ e Å}^{-3}$  

 S = 1.11  $\Delta\rho_{min} = -0.21 \text{ e Å}^{-3}$  

 6626 reflections
 Extinction correction: SHELXL97, Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(20)]^{-1/4}

 536 parameters
 Extinction coefficient: 0.0020 (3)

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: difmap and geom

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x            | У           | Ζ          | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|-------------|------------|-------------------------------|
| C1  | 0.4082 (2)   | 0.7231 (5)  | 0.3755 (3) | 0.0571 (13)                   |
| C2  | 0.43973 (19) | 0.6785 (5)  | 0.4434 (3) | 0.0544 (13)                   |
| C3  | 0.35092 (18) | 0.7072 (5)  | 0.3654 (2) | 0.0444 (11)                   |
| C4  | 0.41355 (18) | 0.6099 (5)  | 0.4982 (3) | 0.0481 (12)                   |
| C5  | 0.32005 (16) | 0.6423 (4)  | 0.4231 (2) | 0.0388 (10)                   |
| C6  | 0.35296 (15) | 0.5814 (4)  | 0.4884 (2) | 0.0352 (10)                   |
| C7  | 0.26002 (16) | 0.6412 (4)  | 0.4184 (2) | 0.0378 (10)                   |
| C8  | 0.32605 (15) | 0.4935 (4)  | 0.5393 (2) | 0.0356 (10)                   |
| C9  | 0.23227 (15) | 0.5692 (4)  | 0.4762 (2) | 0.0350 (10)                   |
| C10 | 0.26556 (15) | 0.4713 (4)  | 0.5276 (2) | 0.0357 (10)                   |
| C11 | 0.17319 (15) | 0.5862 (4)  | 0.4856 (2) | 0.0353 (10)                   |
| C12 | 0.23732 (16) | 0.3584 (4)  | 0.5653 (2) | 0.0370 (10)                   |
| C13 | 0.14684 (15) | 0.4909 (4)  | 0.5329 (2) | 0.0360 (10)                   |
| C14 | 0.17806 (16) | 0.3674 (4)  | 0.5681 (2) | 0.0387 (10)                   |
| C15 | 0.08776 (17) | 0.5078 (5)  | 0.5463 (2) | 0.0464 (11)                   |
| C16 | 0.14702 (19) | 0.2603 (5)  | 0.6065 (3) | 0.0512 (12)                   |
| C17 | 0.0615 (2)   | 0.4075 (6)  | 0.5867 (3) | 0.0550 (13)                   |
| C18 | 0.0911 (2)   | 0.2800 (6)  | 0.6153 (3) | 0.0604 (14)                   |
| C20 | 0.22674 (17) | 0.6982 (5)  | 0.3482 (2) | 0.0483 (11)                   |
| C21 | 0.2261 (2)   | 0.8465 (6)  | 0.3280 (3) | 0.0723 (16)                   |
| C22 | 0.1970 (3)   | 0.8925 (10) | 0.2595 (5) | 0.106 (3)                     |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C23  | 0.1690 (3)   | 0.7895 (13) | 0.2123 (4) | 0.120 (4)   |
|------|--------------|-------------|------------|-------------|
| C24  | 0.1700 (3)   | 0.6451 (11) | 0.2308 (3) | 0.105 (3)   |
| C25  | 0.1988 (2)   | 0.5961 (7)  | 0.2987 (3) | 0.0669 (15) |
| C30  | 0.35873 (15) | 0.4391 (4)  | 0.6107 (2) | 0.0375 (10) |
| C31  | 0.40131 (16) | 0.3323 (5)  | 0.6126 (2) | 0.0444 (11) |
| C32  | 0.42905 (18) | 0.2851 (5)  | 0.6807 (3) | 0.0487 (12) |
| C33  | 0.41595 (18) | 0.3416 (5)  | 0.7495 (2) | 0.0488 (11) |
| C34  | 0.3746 (2)   | 0.4500 (5)  | 0.7468 (2) | 0.0519 (12) |
| C35  | 0.34595 (19) | 0.4986 (5)  | 0.6788 (2) | 0.0486 (12) |
| C36  | 0.4456 (2)   | 0.2853 (6)  | 0.8254 (3) | 0.0669 (14) |
| C37  | 0.4903 (4)   | 0.3883 (8)  | 0.8554 (4) | 0.202 (5)   |
| H37A | 0.5054       | 0.3571      | 0.9052     | 0.303*      |
| H37B | 0.4745       | 0.4860      | 0.8580     | 0.303*      |
| H37C | 0.5204       | 0.3893      | 0.8228     | 0.303*      |
| C38  | 0.4708 (3)   | 0.1331 (7)  | 0.8175 (3) | 0.146 (3)   |
| H38A | 0.5047       | 0.1407      | 0.7920     | 0.219*      |
| H38B | 0.4435       | 0.0710      | 0.7886     | 0.219*      |
| H38C | 0.4802       | 0.0908      | 0.8667     | 0.219*      |
| C39  | 0.4024 (4)   | 0.2652 (12) | 0.8809 (4) | 0.218 (6)   |
| H39A | 0.4184       | 0.2046      | 0.9222     | 0.327*      |
| H39B | 0.3689       | 0.2180      | 0.8563     | 0.327*      |
| H39C | 0.3922       | 0.3601      | 0.8999     | 0.327*      |
| C40  | 0.14101 (16) | 0.7183 (4)  | 0.4525 (2) | 0.0371 (10) |
| C41  | 0.15368 (19) | 0.8579 (5)  | 0.4817 (2) | 0.0491 (12) |
| C42  | 0.1243 (2)   | 0.9821 (5)  | 0.4531 (3) | 0.0579 (13) |
| C43  | 0.08086 (18) | 0.9718 (5)  | 0.3945 (2) | 0.0446 (11) |
| C44  | 0.06779 (18) | 0.8326 (5)  | 0.3667 (2) | 0.0490 (12) |
| C45  | 0.09662 (17) | 0.7067 (5)  | 0.3952 (2) | 0.0437 (11) |
| C46  | 0.0491 (2)   | 1.1098 (5)  | 0.3632 (3) | 0.0653 (14) |
| C47  | 0.0073 (3)   | 1.1571 (8)  | 0.4184 (4) | 0.166 (4)   |
| H47A | 0.0282       | 1.1912      | 0.4645     | 0.249*      |
| H47B | -0.0161      | 1.0743      | 0.4292     | 0.249*      |
| H47C | -0.0164      | 1.2357      | 0.3965     | 0.249*      |
| C48  | 0.0899 (3)   | 1.2343 (6)  | 0.3525 (4) | 0.147 (3)   |
| H48A | 0.1074       | 1.2666      | 0.4009     | 0.220*      |
| H48B | 0.0695       | 1.3154      | 0.3273     | 0.220*      |
| H48C | 0.1190       | 1.2005      | 0.3223     | 0.220*      |
| C49  | 0.0140 (3)   | 1.0800 (6)  | 0.2874 (3) | 0.110(2)    |
| H49A | -0.0043      | 1.1698      | 0.2690     | 0.165*      |
| H49B | -0.0145      | 1.0063      | 0.2941     | 0.165*      |
| H49C | 0.0388       | 1.0450      | 0.2515     | 0.165*      |
| C50  | 0.26843 (17) | 0.2211 (5)  | 0.5919 (3) | 0.0473 (11) |
| C51  | 0.2768 (2)   | 0.1763 (6)  | 0.6668 (3) | 0.0656 (15) |
| C52  | 0.3053 (2)   | 0.0437 (8)  | 0.6856 (4) | 0.089 (2)   |
| C53  | 0.3249 (3)   | -0.0439 (7) | 0.6305 (6) | 0.103 (3)   |
| C54  | 0.3169 (3)   | -0.0008 (7) | 0.5560 (5) | 0.092 (2)   |
| C55  | 0.2890 (2)   | 0.1303 (5)  | 0.5368 (3) | 0.0639 (14) |
| H1   | 0.4291 (19)  | 0.759 (5)   | 0.335 (2)  | 0.077*      |
| H2   | 0.4827 (19)  | 0.693 (5)   | 0.454 (2)  | 0.077*      |

| H3  | 0.3284 (18) | 0.744 (5)  | 0.317 (2) | 0.077* |
|-----|-------------|------------|-----------|--------|
| H4  | 0.4347 (18) | 0.574 (5)  | 0.547 (2) | 0.077* |
| H15 | 0.0685 (18) | 0.600 (5)  | 0.524 (2) | 0.077* |
| H16 | 0.1680 (18) | 0.174 (5)  | 0.630 (2) | 0.077* |
| H17 | 0.0193 (19) | 0.428 (5)  | 0.596 (2) | 0.077* |
| H18 | 0.0713 (19) | 0.218 (5)  | 0.644 (2) | 0.077* |
| H21 | 0.245 (2)   | 0.918 (6)  | 0.366 (3) | 0.096* |
| H22 | 0.197 (2)   | 0.993 (6)  | 0.249 (3) | 0.096* |
| H23 | 0.148 (2)   | 0.818 (6)  | 0.163 (3) | 0.096* |
| H24 | 0.152 (2)   | 0.564 (6)  | 0.199 (3) | 0.096* |
| H25 | 0.201 (2)   | 0.488 (6)  | 0.316 (3) | 0.096* |
| H31 | 0.4121 (18) | 0.287 (5)  | 0.565 (2) | 0.077* |
| H32 | 0.4602 (19) | 0.215 (5)  | 0.678 (2) | 0.077* |
| H34 | 0.3639 (18) | 0.496 (5)  | 0.793 (2) | 0.077* |
| H35 | 0.3160 (18) | 0.572 (5)  | 0.681 (2) | 0.077* |
| H41 | 0.1844 (18) | 0.866 (5)  | 0.523 (2) | 0.077* |
| H42 | 0.1385 (18) | 1.075 (5)  | 0.476 (2) | 0.077* |
| H44 | 0.0400 (18) | 0.817 (5)  | 0.325 (2) | 0.077* |
| H45 | 0.0856 (18) | 0.607 (5)  | 0.373 (2) | 0.077* |
| H51 | 0.263 (2)   | 0.241 (6)  | 0.706 (3) | 0.096* |
| Н52 | 0.310 (2)   | 0.018 (6)  | 0.736 (3) | 0.096* |
| Н53 | 0.346 (2)   | -0.140 (6) | 0.646 (3) | 0.096* |
| H54 | 0.329 (2)   | -0.069 (6) | 0.514 (3) | 0.096* |
| H55 | 0.281 (2)   | 0.163 (5)  | 0.480 (3) | 0.096* |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$  | $U^{22}$  | $U^{33}$  | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-----------|-----------|-----------|--------------|--------------|--------------|
| C1  | 0.047 (3) | 0.065 (3) | 0.061 (3) | -0.008 (3)   | 0.018 (2)    | 0.010 (3)    |
| C2  | 0.034 (3) | 0.070 (3) | 0.058 (3) | -0.011 (3)   | 0.000 (2)    | 0.009 (3)    |
| C3  | 0.043 (3) | 0.045 (3) | 0.046 (3) | -0.002 (2)   | 0.009 (2)    | 0.008 (2)    |
| C4  | 0.039 (3) | 0.056 (3) | 0.048 (3) | -0.004 (2)   | -0.003 (2)   | 0.004 (2)    |
| C5  | 0.039 (2) | 0.034 (2) | 0.043 (2) | -0.002 (2)   | 0.0004 (19)  | 0.0016 (19)  |
| C6  | 0.028 (2) | 0.035 (2) | 0.042 (2) | -0.0030 (19) | 0.0011 (18)  | 0.0019 (19)  |
| C7  | 0.038 (2) | 0.038 (2) | 0.037 (2) | 0.003 (2)    | -0.0016 (18) | 0.0045 (19)  |
| C8  | 0.033 (2) | 0.034 (2) | 0.039 (2) | 0.0025 (19)  | 0.0022 (18)  | -0.0026 (19) |
| C9  | 0.032 (2) | 0.036 (2) | 0.036 (2) | 0.0012 (19)  | -0.0014 (18) | 0.0010 (19)  |
| C10 | 0.031 (2) | 0.040 (2) | 0.036 (2) | 0.0034 (19)  | 0.0023 (17)  | 0.0007 (19)  |
| C11 | 0.031 (2) | 0.038 (2) | 0.035 (2) | 0.0015 (19)  | -0.0029 (18) | 0.0006 (19)  |
| C12 | 0.035 (2) | 0.040 (3) | 0.037 (2) | 0.004 (2)    | 0.0057 (18)  | 0.0036 (19)  |
| C13 | 0.030 (2) | 0.045 (3) | 0.032 (2) | -0.001 (2)   | 0.0005 (17)  | -0.005 (2)   |
| C14 | 0.039 (2) | 0.039 (3) | 0.039 (2) | -0.004 (2)   | 0.0082 (19)  | 0.002 (2)    |
| C15 | 0.038 (3) | 0.057 (3) | 0.045 (3) | -0.001 (2)   | 0.006 (2)    | -0.001 (2)   |
| C16 | 0.043 (3) | 0.056 (3) | 0.055 (3) | -0.005 (2)   | 0.004 (2)    | 0.008 (2)    |
| C17 | 0.039 (3) | 0.068 (3) | 0.059 (3) | 0.000 (3)    | 0.013 (2)    | 0.004 (3)    |
| C18 | 0.049 (3) | 0.072 (4) | 0.063 (3) | -0.011 (3)   | 0.019 (2)    | 0.011 (3)    |
| C20 | 0.041 (3) | 0.065 (3) | 0.041 (3) | 0.010 (2)    | 0.010 (2)    | 0.012 (2)    |
| C21 | 0.059 (3) | 0.081 (4) | 0.078 (4) | 0.012 (3)    | 0.010 (3)    | 0.041 (3)    |
|     |           |           |           |              |              |              |

| C22 | 0.079 (5)  | 0.127 (7)  | 0.115 (6) | 0.033 (5)  | 0.028 (4)   | 0.076 (6)  |
|-----|------------|------------|-----------|------------|-------------|------------|
| C23 | 0.094 (6)  | 0.208 (11) | 0.059 (5) | 0.061 (7)  | 0.009 (4)   | 0.045 (6)  |
| C24 | 0.088 (5)  | 0.168 (8)  | 0.053 (4) | 0.050 (5)  | -0.019 (3)  | -0.023 (4) |
| C25 | 0.056 (3)  | 0.097 (4)  | 0.046 (3) | 0.023 (3)  | -0.003 (2)  | -0.010 (3) |
| C30 | 0.027 (2)  | 0.043 (3)  | 0.043 (3) | -0.001 (2) | 0.0014 (18) | 0.004 (2)  |
| C31 | 0.031 (2)  | 0.059 (3)  | 0.043 (3) | 0.009 (2)  | 0.002 (2)   | 0.004 (2)  |
| C32 | 0.037 (3)  | 0.056 (3)  | 0.053 (3) | 0.010 (2)  | 0.004 (2)   | 0.011 (2)  |
| C33 | 0.051 (3)  | 0.048 (3)  | 0.047 (3) | 0.001 (2)  | 0.000 (2)   | 0.013 (2)  |
| C34 | 0.065 (3)  | 0.050 (3)  | 0.040 (3) | 0.008 (3)  | 0.006 (2)   | -0.002 (2) |
| C35 | 0.053 (3)  | 0.046 (3)  | 0.046 (3) | 0.010 (2)  | 0.002 (2)   | 0.001 (2)  |
| C36 | 0.085 (4)  | 0.061 (3)  | 0.051 (3) | 0.013 (3)  | -0.010 (3)  | 0.016 (3)  |
| C37 | 0.268 (10) | 0.137 (7)  | 0.160 (7) | -0.100(7)  | -0.174 (8)  | 0.081 (6)  |
| C38 | 0.226 (9)  | 0.095 (5)  | 0.100 (5) | 0.050 (6)  | -0.066 (5)  | 0.025 (4)  |
| C39 | 0.200 (9)  | 0.369 (15) | 0.095 (6) | 0.109 (10) | 0.062 (6)   | 0.141 (8)  |
| C40 | 0.032 (2)  | 0.042 (3)  | 0.037 (2) | 0.003 (2)  | 0.0034 (18) | -0.005 (2) |
| C41 | 0.051 (3)  | 0.050 (3)  | 0.043 (3) | 0.005 (2)  | -0.012 (2)  | -0.005 (2) |
| C42 | 0.077 (3)  | 0.038 (3)  | 0.055 (3) | 0.002 (3)  | -0.015 (3)  | -0.010 (2) |
| C43 | 0.050 (3)  | 0.044 (3)  | 0.040 (2) | 0.013 (2)  | 0.003 (2)   | 0.001 (2)  |
| C44 | 0.043 (3)  | 0.050 (3)  | 0.051 (3) | 0.005 (2)  | -0.009 (2)  | -0.004 (2) |
| C45 | 0.037 (2)  | 0.040 (3)  | 0.053 (3) | 0.005 (2)  | -0.003 (2)  | -0.003 (2) |
| C46 | 0.086 (4)  | 0.047 (3)  | 0.060 (3) | 0.024 (3)  | -0.005 (3)  | 0.005 (2)  |
| C47 | 0.227 (9)  | 0.165 (8)  | 0.112 (6) | 0.157 (7)  | 0.044 (6)   | 0.026 (5)  |
| C48 | 0.164 (7)  | 0.055 (4)  | 0.205 (8) | -0.021 (5) | -0.060 (6)  | 0.053 (5)  |
| C49 | 0.152 (6)  | 0.084 (4)  | 0.085 (4) | 0.042 (4)  | -0.029 (4)  | 0.026 (4)  |
| C50 | 0.034 (2)  | 0.041 (3)  | 0.067 (3) | -0.002 (2) | 0.003 (2)   | 0.011 (2)  |
| C51 | 0.047 (3)  | 0.067 (4)  | 0.082 (4) | 0.001 (3)  | 0.005 (3)   | 0.035 (3)  |
| C52 | 0.057 (4)  | 0.088 (5)  | 0.118 (6) | 0.002 (3)  | -0.001 (4)  | 0.062 (5)  |
| C53 | 0.075 (5)  | 0.049 (4)  | 0.184 (9) | 0.016 (3)  | 0.005 (5)   | 0.035 (5)  |
| C54 | 0.081 (4)  | 0.046 (4)  | 0.149 (7) | 0.012 (3)  | 0.003 (4)   | -0.014 (4) |
| C55 | 0.056 (3)  | 0.044 (3)  | 0.091 (4) | 0.005 (3)  | 0.003 (3)   | -0.008 (3) |

# Geometric parameters (Å, °)

| C1—C3  | 1.348 (6) | C33—C36  | 1.539 (6) |
|--------|-----------|----------|-----------|
| C1—C2  | 1.408 (6) | C34—C35  | 1.392 (6) |
| C1—H1  | 0.97 (4)  | C34—H34  | 0.98 (4)  |
| C2—C4  | 1.355 (6) | С35—Н35  | 0.97 (4)  |
| С2—Н2  | 1.02 (4)  | C36—C37  | 1.464 (7) |
| C3—C5  | 1.439 (5) | C36—C39  | 1.498 (8) |
| С3—Н3  | 1.02 (4)  | C36—C38  | 1.508 (7) |
| C4—C6  | 1.441 (5) | С37—Н37А | 0.9600    |
| C4—H4  | 1.01 (4)  | С37—Н37В | 0.9600    |
| С5—С7  | 1.406 (5) | С37—Н37С | 0.9600    |
| C5—C6  | 1.437 (5) | C38—H38A | 0.9600    |
| C6—C8  | 1.402 (5) | C38—H38B | 0.9600    |
| С7—С9  | 1.428 (5) | C38—H38C | 0.9600    |
| C7—C20 | 1.495 (5) | С39—Н39А | 0.9600    |
| C8—C10 | 1.431 (5) | С39—Н39В | 0.9600    |
| C8—C30 | 1.498 (5) | С39—Н39С | 0.9600    |
|        |           |          |           |

| C9—C11   | 1.425 (5)  | C40—C45       | 1.384 (5) |
|----------|------------|---------------|-----------|
| C9—C10   | 1.443 (5)  | C40—C41       | 1.384 (5) |
| C10-C12  | 1.422 (5)  | C41—C42       | 1.386 (6) |
| C11—C13  | 1.392 (5)  | C41—H41       | 0.98 (4)  |
| C11—C40  | 1.499 (5)  | C42—C43       | 1.385 (6) |
| C12—C14  | 1.402 (5)  | C42—H42       | 0.98 (4)  |
| C12—C50  | 1.491 (5)  | C43—C44       | 1.373 (6) |
| C13—C14  | 1.442 (5)  | C43—C46       | 1.528 (6) |
| C13—C15  | 1.442 (5)  | C44—C45       | 1.392 (6) |
| C14—C16  | 1.427 (6)  | C44—H44       | 0.95 (4)  |
| C15—C17  | 1.346 (6)  | C45—H45       | 1.00 (4)  |
| C15—H15  | 1.01 (4)   | C46—C48       | 1.504 (7) |
| C16—C18  | 1.353 (6)  | C46—C47       | 1.519 (7) |
| C16—H16  | 0.99 (4)   | C46—C49       | 1.528 (7) |
| C17—C18  | 1.412 (7)  | C47—H47A      | 0.9600    |
| С17—Н17  | 1.04 (4)   | C47—H47B      | 0.9600    |
| C18—H18  | 0.92 (4)   | С47—Н47С      | 0.9600    |
| C20—C21  | 1.385 (6)  | C48—H48A      | 0.9600    |
| C20—C25  | 1.391 (6)  | C48—H48B      | 0.9600    |
| C21—C22  | 1.397 (8)  | C48—H48C      | 0.9600    |
| C21—H21  | 1.00 (5)   | C49—H49A      | 0.9600    |
| C22—C23  | 1.373 (11) | C49—H49B      | 0.9600    |
| C22—H22  | 0.93 (5)   | С49—Н49С      | 0.9600    |
| C23—C24  | 1.344 (11) | C50—C51       | 1.386 (6) |
| С23—Н23  | 1.00 (5)   | C50—C55       | 1.401 (6) |
| C24—C25  | 1.392 (8)  | C51—C52       | 1.395 (8) |
| C24—H24  | 1.00 (5)   | C51—H51       | 1.00 (5)  |
| C25—H25  | 1.03 (5)   | C52—C53       | 1.374 (9) |
| C30—C35  | 1.384 (5)  | С52—Н52       | 0.92 (5)  |
| C30—C31  | 1.388 (5)  | C53—C54       | 1.373 (9) |
| C31—C32  | 1.381 (5)  | С53—Н53       | 1.02 (5)  |
| C31—H31  | 0.99 (4)   | C54—C55       | 1.379 (7) |
| C32—C33  | 1.387 (6)  | C54—H54       | 1.04 (5)  |
| С32—Н32  | 0.97 (4)   | С55—Н55       | 1.06 (5)  |
| C33—C34  | 1.378 (6)  |               |           |
| C3—C1—C2 | 121.0 (4)  | C30—C35—C34   | 120.5 (4) |
| C3—C1—H1 | 121 (3)    | С30—С35—Н35   | 121 (3)   |
| C2—C1—H1 | 118 (3)    | С34—С35—Н35   | 118 (3)   |
| C4—C2—C1 | 120.5 (4)  | C37—C36—C39   | 110.3 (7) |
| C4—C2—H2 | 117 (2)    | C37—C36—C38   | 109.7 (6) |
| C1—C2—H2 | 123 (2)    | C39—C36—C38   | 104.5 (6) |
| C1—C3—C5 | 121.3 (4)  | C37—C36—C33   | 110.7 (4) |
| С1—С3—Н3 | 120 (2)    | C39—C36—C33   | 109.9 (5) |
| С5—С3—Н3 | 118 (2)    | C38—C36—C33   | 111.5 (4) |
| C2—C4—C6 | 120.8 (4)  | С36—С37—Н37А  | 109.5     |
| C2—C4—H4 | 123 (2)    | С36—С37—Н37В  | 109.5     |
| С6—С4—Н4 | 116 (2)    | H37A—C37—H37B | 109.5     |
| C7—C5—C6 | 119.9 (4)  | С36—С37—Н37С  | 109.5     |
| C7—C5—C3 | 122.6 (4)  | H37A—C37—H37C | 109.5     |

| C6—C5—C3    | 117.5 (4) | Н37В—С37—Н37С | 109.5     |
|-------------|-----------|---------------|-----------|
| C8—C6—C5    | 119.7 (3) | C36—C38—H38A  | 109.5     |
| C8—C6—C4    | 122.0 (4) | C36—C38—H38B  | 109.5     |
| C5—C6—C4    | 118.2 (4) | H38A—C38—H38B | 109.5     |
| С5—С7—С9    | 119.5 (3) | C36—C38—H38C  | 109.5     |
| C5—C7—C20   | 118.8 (4) | H38A—C38—H38C | 109.5     |
| C9—C7—C20   | 121.2 (3) | H38B—C38—H38C | 109.5     |
| C6—C8—C10   | 119.6 (3) | С36—С39—Н39А  | 109.5     |
| C6—C8—C30   | 120.4 (3) | С36—С39—Н39В  | 109.5     |
| C10-C8-C30  | 119.5 (3) | H39A—C39—H39B | 109.5     |
| C11—C9—C7   | 124.0 (3) | С36—С39—Н39С  | 109.5     |
| C11—C9—C10  | 117.7 (3) | Н39А—С39—Н39С | 109.5     |
| C7—C9—C10   | 118.4 (3) | Н39В—С39—Н39С | 109.5     |
| C12-C10-C8  | 122.6 (3) | C45—C40—C41   | 117.5 (4) |
| C12—C10—C9  | 119.2 (3) | C45—C40—C11   | 122.7 (4) |
| C8—C10—C9   | 118.2 (3) | C41—C40—C11   | 119.8 (3) |
| C13—C11—C9  | 120.3 (3) | C40—C41—C42   | 121.3 (4) |
| C13—C11—C40 | 119.3 (3) | C40—C41—H41   | 118 (3)   |
| C9—C11—C40  | 119.9 (3) | C42—C41—H41   | 121 (3)   |
| C14—C12—C10 | 119.3 (3) | C43—C42—C41   | 121.5 (4) |
| C14—C12—C50 | 119.6 (4) | C43—C42—H42   | 124 (3)   |
| C10-C12-C50 | 120.5 (3) | C41—C42—H42   | 114 (3)   |
| C11—C13—C14 | 120.1 (3) | C44—C43—C42   | 116.9 (4) |
| C11—C13—C15 | 122.1 (4) | C44—C43—C46   | 122.1 (4) |
| C14—C13—C15 | 117.8 (4) | C42—C43—C46   | 121.0 (4) |
| C12-C14-C16 | 122.5 (4) | C43—C44—C45   | 122.3 (4) |
| C12—C14—C13 | 119.6 (4) | C43—C44—H44   | 122 (3)   |
| C16—C14—C13 | 117.9 (4) | C45—C44—H44   | 116 (3)   |
| C17—C15—C13 | 121.4 (4) | C40—C45—C44   | 120.5 (4) |
| C17—C15—H15 | 123 (3)   | C40—C45—H45   | 120 (3)   |
| C13—C15—H15 | 115 (3)   | C44—C45—H45   | 120 (3)   |
| C18—C16—C14 | 121.2 (4) | C48—C46—C47   | 109.6 (6) |
| C18—C16—H16 | 120 (3)   | C48—C46—C49   | 108.3 (5) |
| C14—C16—H16 | 119 (3)   | C47—C46—C49   | 107.0 (5) |
| C15—C17—C18 | 120.2 (4) | C48—C46—C43   | 111.1 (4) |
| С15—С17—Н17 | 118 (2)   | C47—C46—C43   | 108.6 (4) |
| C18—C17—H17 | 122 (2)   | C49—C46—C43   | 112.1 (4) |
| C16—C18—C17 | 121.0 (5) | C46—C47—H47A  | 109.5     |
| C16—C18—H18 | 123 (3)   | C46—C47—H47B  | 109.5     |
| C17-C18-H18 | 116 (3)   | H47A—C47—H47B | 109.5     |
| C21—C20—C25 | 119.0 (5) | С46—С47—Н47С  | 109.5     |
| C21—C20—C7  | 122.6 (4) | H47A—C47—H47C | 109.5     |
| C25—C20—C7  | 118.2 (4) | H47B—C47—H47C | 109.5     |
| C20—C21—C22 | 120.2 (6) | C46—C48—H48A  | 109.5     |
| C20—C21—H21 | 117 (3)   | C46—C48—H48B  | 109.5     |
| C22—C21—H21 | 123 (3)   | H48A—C48—H48B | 109.5     |
| C23—C22—C21 | 119.4 (7) | C46—C48—H48C  | 109.5     |
| С23—С22—Н22 | 123 (4)   | H48A—C48—H48C | 109.5     |
| C21—C22—H22 | 118 (4)   | H48B-C48-H48C | 109.5     |

| C24—C23—C22 | 120.8 (7) | C46—C49—H49A  | 109.5     |
|-------------|-----------|---------------|-----------|
| С24—С23—Н23 | 118 (3)   | C46—C49—H49B  | 109.5     |
| С22—С23—Н23 | 122 (3)   | H49A—C49—H49B | 109.5     |
| C23—C24—C25 | 120.9 (7) | C46—C49—H49C  | 109.5     |
| С23—С24—Н24 | 126 (3)   | H49A—C49—H49C | 109.5     |
| С25—С24—Н24 | 113 (3)   | H49B—C49—H49C | 109.5     |
| C20—C25—C24 | 119.5 (6) | C51—C50—C55   | 118.4 (5) |
| С20—С25—Н25 | 116 (3)   | C51—C50—C12   | 124.2 (4) |
| С24—С25—Н25 | 124 (3)   | C55-C50-C12   | 117.3 (4) |
| C35—C30—C31 | 118.0 (4) | C50—C51—C52   | 119.8 (6) |
| С35—С30—С8  | 118.3 (3) | C50-C51-H51   | 119 (3)   |
| C31—C30—C8  | 123.6 (4) | C52—C51—H51   | 121 (3)   |
| C32—C31—C30 | 120.7 (4) | C53—C52—C51   | 120.8 (6) |
| С32—С31—Н31 | 118 (3)   | С53—С52—Н52   | 123 (3)   |
| С30—С31—Н31 | 121 (3)   | C51—C52—H52   | 117 (4)   |
| C31—C32—C33 | 122.0 (4) | C52—C53—C54   | 120.0 (6) |
| С31—С32—Н32 | 117 (3)   | С52—С53—Н53   | 119 (3)   |
| С33—С32—Н32 | 121 (3)   | С54—С53—Н53   | 121 (3)   |
| C34—C33—C32 | 116.9 (4) | C53—C54—C55   | 119.8 (6) |
| C34—C33—C36 | 121.2 (4) | С53—С54—Н54   | 121 (3)   |
| C32—C33—C36 | 121.9 (4) | C55—C54—H54   | 119 (3)   |
| C33—C34—C35 | 122.0 (4) | C54—C55—C50   | 121.2 (6) |
| С33—С34—Н34 | 121 (3)   | С54—С55—Н55   | 120 (3)   |
| С35—С34—Н34 | 117 (3)   | С50—С55—Н55   | 118 (3)   |





